Перевод: с английского на все языки

со всех языков на английский

Proceedings of the Institute of Electrical and Electronics Engineers

  • 1 Goldmark, Peter Carl

    [br]
    b. 2 December 1906 Budapest, Hungary
    d. 7 December 1977 Westchester Co., New York, USA
    [br]
    Austro-Hungarian engineer who developed the first commercial colour television system and the long-playing record.
    [br]
    After education in Hungary and a period as an assistant at the Technische Hochschule, Berlin, Goldmark moved to England, where he joined Pye of Cambridge and worked on an experimental thirty-line television system using a cathode ray tube (CRT) for the display. In 1936 he moved to the USA to work at Columbia Broadcasting Laboratories. There, with monochrome television based on the CRT virtually a practical proposition, he devoted his efforts to finding a way of producing colour TV images: in 1940 he gave his first demonstration of a working system. There then followed a series of experimental field-sequential colour TV systems based on segmented red, green and blue colour wheels and drums, where the problem was to find an acceptable compromise between bandwidth, resolution, colour flicker and colour-image breakup. Eventually he arrived at a system using a colour wheel in combination with a CRT containing a panchromatic phosphor screen, with a scanned raster of 405 lines and a primary colour rate of 144 fields per second. Despite the fact that the receivers were bulky, gave relatively poor, dim pictures and used standards totally incompatible with the existing 525-line, sixty fields per second interlaced monochrome (black and white) system, in 1950 the Federal Communications Commission (FCC), anxious to encourage postwar revival of the industry, authorized the system for public broadcasting. Within eighteen months, however, bowing to pressure from the remainder of the industry, which had formed its own National Television Systems Committee (NTSC) to develop a much more satisfactory, fully compatible system based on the RCA three-gun shadowmask CRT, the FCC withdrew its approval.
    While all this was going on, Goldmark had also been working on ideas for overcoming the poor reproduction, noise quality, short playing-time (about four minutes) and limited robustness and life of the long-established 78 rpm 12 in. (30 cm) diameter shellac gramophone record. The recent availability of a new, more robust, plastic material, vinyl, which had a lower surface noise, enabled him in 1948 to reduce the groove width some three times to 0.003 in. (0.0762 mm), use a more lightly loaded synthetic sapphire stylus and crystal transducer with improved performance, and reduce the turntable speed to 33 1/3 rpm, to give thirty minutes of high-quality music per side. This successful development soon led to the availability of stereophonic recordings, based on the ideas of Alan Blumlein at EMI in the 1930s.
    In 1950 Goldmark became a vice-president of CBS, but he still found time to develop a scan conversion system for relaying television pictures to Earth from the Lunar Orbiter spacecraft. He also almost brought to the market a domestic electronic video recorder (EVR) system based on the thermal distortion of plastic film by separate luminance and coded colour signals, but this was overtaken by the video cassette recorder (VCR) system, which uses magnetic tape.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Award 1945. Institute of Electrical and Electronics Engineers Vladimir K. Zworykin Award 1961.
    Bibliography
    1951, with J.W.Christensen and J.J.Reeves, "Colour television. USA Standard", Proceedings of the Institute of Radio Engineers 39: 1,288 (describes the development and standards for the short-lived field-sequential colour TV standard).
    1949, with R.Snepvangers and W.S.Bachman, "The Columbia long-playing microgroove recording system", Proceedings of the Institute of Radio Engineers 37:923 (outlines the invention of the long-playing record).
    Further Reading
    E.W.Herold, 1976, "A history of colour television displays", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,331.
    KF

    Biographical history of technology > Goldmark, Peter Carl

  • 2 Flechsig, W.

    [br]
    fl. c.1938 Germany
    [br]
    German engineer notable for early patents that foreshadowed the development of the shadowmask colour cathode ray tube.
    [br]
    In 1938, whilst working for a German electrical company, Flechsig filed a patent in which he described the use of an array of stretched parallel wires to control the landing of either one or three electron beams on separate red, green and blue phosphor stripes within a single cathode ray tube. Whilst the single-beam arrangement required subsidiary deflection to alternate the beam landing angle, the three-beam version effectively used the wires to "mask" the landing of the electron beams so that each one only illuminated the relevant colour phosphor stripes. Although not developed at the time, the concept anticipated the subsequent invention of the shadowmask tube by RCA in the early 1950s and, even more closely, the development of the Sony Trinitron some years later.
    [br]
    Bibliography
    1938, German patent no. 736, 575.
    1941, French patent no. 866, 065.
    Further Reading
    E.W.Herold, 1976, "A history of colour television displays", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,331.
    K.G.Freeman, "The history of colour CRTs. A personal view", International Conference on the History of Television, Institution of Electrical Engineers Publication no. 271, p.
    38.
    KF

    Biographical history of technology > Flechsig, W.

  • 3 Gray, Elisha

    SUBJECT AREA: Telecommunications
    [br]
    b. 2 August 1835 Barnesville, Ohio, USA
    d. 21 January 1901 Newtonville, Massachusetts, USA
    [br]
    American inventor who was only just beaten by Alexander Graham Bell in the race for the first telephone patent.
    [br]
    Initially apprenticed to a carpenter, Gray soon showed an interest in chemistry, but he eventually studied electrical engineering at Oberlin College, Oberlin, Ohio, in the late 1850s. In 1869 he founded the Western Electric Manufacturing Company, where he devised an electric-needle annunciator for use in hotels and lifts and carried out experimental work aimed at the development of a means of distant-speech communication. After successful realization of a liquid-based microphone and public demonstrations of a receiver using a metal diaphragm, on 14 February 1876 he deposited a caveat of intention to file a patent claim within three months for the invention of the telephone, only to learn that Alexander Graham Bell had filed a full patent claim only three hours earlier on the same day. Following litigation, the patent was eventually awarded to Bell. In 1880 Gray was appointed Professor of Dynamic Electricity at Oberlin College, but he appears to have retained his business interests since in 1891 he was both a member of the firm of Gray and Barton and electrician to his old firm, Western Electric. Subsequently, in 1895, he invented the TelAutograph, a form of remote-writing telegraph, or facsimile, capable of operating over short distances. The system used a transmitter in which the x and y movements of a writing stylus were coupled to a pair of variable resistors. In turn, these were connected by two telegraph wires to a pair of receiving coils, which were used to control the position of a pen on a sheet of paper, thus replicating the movement of the original stylus.
    [br]
    Bibliography
    1878, Experimental Research in Electro-Harmonic Telegraph and Telephony, 1867–76.
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph.
    D.A.Hounshill, 1975, "Elisha Gray and the telephone. On the disadvantage of being an expert", Technology and Culture 16:133.
    —1976, "Bell and Gray. Contrast in style, politics and etiquette", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,305.
    International Telecommunications Union, 1965, From Semaphore to Satellite, Geneva.
    KF

    Biographical history of technology > Gray, Elisha

  • 4 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 5 Williams, Sir Frederic Calland

    [br]
    b. 26 June 1911 Stockport, Cheshire, England
    d. 11 August 1977 Prestbury, Cheshire, England
    [br]
    English electrical engineer who invented the Williams storage cathode ray tube, which was extensively used worldwide as a data memory in the first digital computers.
    [br]
    Following education at Stockport Grammar School, Williams entered Manchester University in 1929, gaining his BSc in 1932 and MSc in 1933. After a short time as a college apprentice with Metropolitan Vickers, he went to Magdalen College, Oxford, to study for a DPhil, which he was awarded in 1936. He returned to Manchester University that year as an assistant lecturer, gaining his DSc in 1939. Following the outbreak of the Second World War he worked for the Scientific Civil Service, initially at the Bawdsey Research Station and then at the Telecommunications Research Establishment at Malvern, Worcestershire. There he was involved in research on non-incandescent amplifiers and diode rectifiers and the development of the first practical radar system capable of identifying friendly aircraft. Later in the war, he devised an automatic radar system suitable for use by fighter aircraft.
    After the war he resumed his academic career at Manchester, becoming Professor of Electrical Engineering and Director of the University Electrotechnical Laboratory in 1946. In the same year he succeeded in developing a data-memory device based on the cathode ray tube, in which the information was stored and read by electron-beam scanning of a charge-retaining target. The Williams storage tube, as it became known, not only found obvious later use as a means of storing single-frame, still television images but proved to be a vital component of the pioneering Manchester University MkI digital computer. Because it enabled both data and program instructions to be stored in the computer, it was soon used worldwide in the development of the early stored-program computers.
    [br]
    Principal Honours and Distinctions
    Knighted 1976. OBE 1945. CBE 1961. FRS 1950. Hon. DSc Durham 1964, Sussex 1971, Wales 1971. First Royal Society of Arts Benjamin Franklin Medal 1957. City of Philadelphia John Scott Award 1960. Royal Society Hughes Medal 1963. Institution of Electrical Engineers Faraday Medal 1972. Institute of Electrical and Electronics Engineers Pioneer Award 1973.
    Bibliography
    Williams contributed papers to many scientific journals, including Proceedings of the Royal Society, Proceedings of the Cambridge Philosophical Society, Journal of the Institution of Electrical Engineers, Proceedings of the Institution of Mechanical Engineers, Wireless Engineer, Post Office Electrical Engineers' Journal. Note especially: 1948, with J.Kilburn, "Electronic digital computers", Nature 162:487; 1949, with J.Kilburn, "A storage system for use with binary digital computing machines", Proceedings of the Institution of Electrical Engineers 96:81; 1975, "Early computers at Manchester University", Radio \& Electronic Engineer 45:327. Williams also collaborated in the writing of vols 19 and 20 of the MIT Radiation
    Laboratory Series.
    Further Reading
    B.Randell, 1973, The Origins of Digital Computers, Berlin: Springer-Verlag. M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall. See also: Stibitz, George R.; Strachey, Christopher.
    KF

    Biographical history of technology > Williams, Sir Frederic Calland

  • 6 Kompfner, Rudolph

    [br]
    b. 16 May 1909 Vienna, Austria
    d. 3 December 1977 Stanford, California, USA
    [br]
    Austrian (naturalized English in 1949, American in 1957) electrical engineer primarily known for his invention of the travelling-wave tube.
    [br]
    Kompfner obtained a degree in engineering from the Vienna Technische Hochschule in 1931 and qualified as a Diplom-Ingenieur in Architecture two years later. The following year, with a worsening political situation in Austria, he moved to England and became an architectural apprentice. In 1936 he became Managing Director of a building firm owned by a relative, but at the same time he was avidly studying physics and electronics. His first patent, for a television pick-up device, was filed in 1935 and granted in 1937, but was not in fact taken up. In June 1940 he was interned on the Isle of Man, but as a result of a paper previously sent by him to the Editor of Wireless Engineer he was released the following December and sent to join the group at Birmingham University working on centimetric radar. There he worked on klystrons, with little success, but as a result of the experience gained he eventually invented the travelling-wave tube (TWT), which was based on a helical transmission line. After disbandment of the Birmingham team, in 1946 Kompfner moved to the Clarendon Laboratory at Oxford and in 1947 he became a British subject. At the Clarendon Laboratory he met J.R. Pierce of Bell Laboratories, who worked out the theory of operation of the TWT. After gaining his DPhil at Oxford in 1951, Kompfner accepted a post as Principal Scientific Officer at Signals Electronic Research Laboratories, Baldock, but very soon after that he was invited by Pierce to work at Bell on microwave tubes. There, in 1952, he invented the backward-wave oscillator (BWO). He was appointed Director of Electronics Research in 1955 and Director of Communications Research in 1962, having become a US citizen in 1957. In 1958, with Pierce, he designed Echo 1, the first (passive) satellite, which was launched in August 1960. He was also involved with the development of Telstar, the first active communications satellite, which was launched in 1962. Following his retirement from Bell in 1973, he continued to pursue research, alternately at Stanford, California, and Oxford, England.
    [br]
    Principal Honours and Distinctions
    Physical Society Duddell Medal 1955. Franklin Institute Stuart Ballantine Medal 1960. Institute of Electrical and Electronics Engineers David Sarnoff Award 1960. Member of the National Academy of Engineering 1966. Member of the National Academy of Science 1968. Institute of Electrical and Electronics Engineers Medal of Honour 1973. City of Philadelphia John Scott Award 1974. Roentgen Society Silvanus Thompson Medal 1974. President's National medal of Science 1974. Honorary doctorates Vienna 1965, Oxford 1969.
    Bibliography
    1944, "Velocity modulated beams", Wireless Engineer 17:262.
    1942, "Transit time phenomena in electronic tubes", Wireless Engineer 19:3. 1942, "Velocity modulating grids", Wireless Engineer 19:158.
    1946, "The travelling-wave tube", Wireless Engineer 42:369.
    1964, The Invention of the TWT, San Francisco: San Francisco Press.
    Further Reading
    J.R.Pierce, 1992, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers: 980.
    KF

    Biographical history of technology > Kompfner, Rudolph

  • 7 Pierce, George Washington

    [br]
    b. 11 January 1872 Austin, Texas, USA
    d. 25 August 1956 Franklin, New Hampshire, USA
    [br]
    American physicist who made various contributions to electronics, particularly crystal oscillators.
    [br]
    Pierce entered the University of Texas in 1890, gaining his BSc in physics in 1893 and his MSc in 1894. After teaching and doing various odd jobs, in 1897 he obtained a scholarship to Harvard, obtaining his PhD three years later. Following a period at the University of Leipzig, he returned to the USA in 1903 to join the teaching staff at Harvard, where he soon established new courses and began to gain a reputation as a pioneer in electronics, including the study of crystal rectifiers and publication of a textbook on wireless telegraphy. In 1912, with Kennelly, he conceived the idea of motional impedance. The same year he was made first Director of Harvard's Cruft High- Tension Electrical Laboratory, a post he held until his retirement. In 1917 he was appointed Professor of Physics, and for the remainder of the First World War he was also involved in work on submarine detection at the US Naval Base in New London. In 1921 he was appointed Rumford Professor of Physics and became interested in the work of Walter Cady on crystal-controlled circuits. As a result of this he patented the Pierce crystal oscillator in 1924. Having discovered the magnetostriction property of nickel and nichrome, in 1928 he also invented the magnetostriction oscillator. The mercury-vapour discharge lamp is also said to have been his idea. He became Gordon McKay Professor of Physics and Communications in 1935 and retired from Harvard in 1940, but he remained active for the rest of his life with the study of sound generation by birds and insects.
    [br]
    Principal Honours and Distinctions
    President, Institute of Radio Engineers 1918–19. Institute of Electrical and Electronics Engineers Medal of Honour 1929.
    Bibliography
    1910, Principles of Wireless Telegraphy.
    1914, US patent no. 1,450,749 (a mercury vapour tube control circuit). 1919, Electrical Oscillations and Electric Waves.
    1922, "The piezo-electric Resonator", Proceedings of the Institute of Radio Engineers 10:83.
    Further Reading
    F.E.Terman, 1943, Radio Engineers'Handbook, New York: McGraw-Hill (for details of piezo-electric crystal oscillator circuits).
    KF

    Biographical history of technology > Pierce, George Washington

  • 8 Appleton, Sir Edward Victor

    [br]
    b. 6 September 1892 Bradford, England
    d. 21 April 1965 Edinburgh, Scotland
    [br]
    English physicist awarded the Nobel Prize for Physics for his discovery of the ionospheric layer, named after him, which is an efficient reflector of short radio waves, thereby making possible long-distance radio communication.
    [br]
    After early ambitions to become a professional cricketer, Appleton went to St John's College, Cambridge, where he studied under J.J.Thompson and Ernest Rutherford. His academic career interrupted by the First World War, he served as a captain in the Royal Engineers, carrying out investigations into the propagation and fading of radio signals. After the war he joined the Cavendish Laboratory, Cambridge, as a demonstrator in 1920, and in 1924 he moved to King's College, London, as Wheatstone Professor of Physics.
    In the following decade he contributed to developments in valve oscillators (in particular, the "squegging" oscillator, which formed the basis of the first hard-valve time-base) and gained international recognition for research into electromagnetic-wave propagation. His most important contribution was to confirm the existence of a conducting ionospheric layer in the upper atmosphere capable of reflecting radio waves, which had been predicted almost simultaneously by Heaviside and Kennelly in 1902. This he did by persuading the BBC in 1924 to vary the frequency of their Bournemouth transmitter, and he then measured the signal received at Cambridge. By comparing the direct and reflected rays and the daily variation he was able to deduce that the Kennelly- Heaviside (the so-called E-layer) was at a height of about 60 miles (97 km) above the earth and that there was a further layer (the Appleton or F-layer) at about 150 miles (240 km), the latter being an efficient reflector of the shorter radio waves that penetrated the lower layers. During the period 1927–32 and aided by Hartree, he established a magneto-ionic theory to explain the existence of the ionosphere. He was instrumental in obtaining agreement for international co-operation for ionospheric and other measurements in the form of the Second Polar Year (1932–3) and, much later, the International Geophysical Year (1957–8). For all this work, which made it possible to forecast the optimum frequencies for long-distance short-wave communication as a function of the location of transmitter and receiver and of the time of day and year, in 1947 he was awarded the Nobel Prize for Physics.
    He returned to Cambridge as Jacksonian Professor of Natural Philosophy in 1939, and with M.F. Barnett he investigated the possible use of radio waves for radio-location of aircraft. In 1939 he became Secretary of the Government Department of Scientific and Industrial Research, a post he held for ten years. During the Second World War he contributed to the development of both radar and the atomic bomb, and subsequently served on government committees concerned with the use of atomic energy (which led to the establishment of Harwell) and with scientific staff.
    [br]
    Principal Honours and Distinctions
    Knighted (KCB 1941, GBE 1946). Nobel Prize for Physics 1947. FRS 1927. Vice- President, American Institute of Electrical Engineers 1932. Royal Society Hughes Medal 1933. Institute of Electrical Engineers Faraday Medal 1946. Vice-Chancellor, Edinburgh University 1947. Institution of Civil Engineers Ewing Medal 1949. Royal Medallist 1950. Institute of Electrical and Electronics Engineers Medal of Honour 1962. President, British Association 1953. President, Radio Industry Council 1955–7. Légion d'honneur. LLD University of St Andrews 1947.
    Bibliography
    1925, joint paper with Barnett, Nature 115:333 (reports Appleton's studies of the ionosphere).
    1928, "Some notes of wireless methods of investigating the electrical structure of the upper atmosphere", Proceedings of the Physical Society 41(Part III):43. 1932, Thermionic Vacuum Tubes and Their Applications (his work on valves).
    1947, "The investigation and forecasting of ionospheric conditions", Journal of the
    Institution of Electrical Engineers 94, Part IIIA: 186 (a review of British work on the exploration of the ionosphere).
    with J.F.Herd \& R.A.Watson-Watt, British patent no. 235,254 (squegging oscillator).
    Further Reading
    Who Was Who, 1961–70 1972, VI, London: A. \& C.Black (for fuller details of honours). R.Clark, 1971, Sir Edward Appleton, Pergamon (biography).
    J.Jewkes, D.Sawers \& R.Stillerman, 1958, The Sources of Invention.
    KF

    Biographical history of technology > Appleton, Sir Edward Victor

  • 9 Taylor, Albert Hoyt

    [br]
    b. 1 January 1874 Chicago, Illinois, USA
    d. 11 December 1961 Claremont, California, USA
    [br]
    American radio engineer whose work on radio-detection helped lay the foundations for radar.
    [br]
    Taylor gained his degree in engineering from Northwest University, Evanston, Illinois, then spent a time at the University of Gottingen. On his return to the USA he taught successively at Michigan State University, at Lansing, and at the universities of Wisconsin at Madison and North Dakota at Grand Forks. From 1923 until 1945 he supervised the Radio Division at the US Naval Research Laboratories. There he carried out studies of short-wave radio propagation and confirmed Heaviside's 1925 theory of the reflection characteristics of the ionosphere. In the 1920s and 1930s he investigated radio echoes, and in 1933, with L.C.Young and L.A.Hyland, he filed a patent for a system of radio-detection that contributed to the subsequent development of radar.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1927. President, Institute of Radio Engineers 1929. Institute of Electrical and Electronics Engineers Medal of Honour 1942.
    Bibliography
    1926, with E.O.Hulbert, "The propagation of radio waves over the earth", Physical Review 27:189.
    1936, "The measurement of RF power", Proceedings of the Institute of Radio Engineers 24: 1,342.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, London: Peter Peregrinus.
    KF

    Biographical history of technology > Taylor, Albert Hoyt

  • 10 Noyce, Robert

    [br]
    b. 12 December 1927 Burlington, Iowa, USA
    [br]
    American engineer responsible for the development of integrated circuits and the microprocessor chip.
    [br]
    Noyce was the son of a Congregational minister whose family, after a number of moves, finally settled in Grinnell, some 50 miles (80 km) east of Des Moines, Iowa. Encouraged to follow his interest in science, in his teens he worked as a baby-sitter and mower of lawns to earn money for his hobby. One of his clients was Professor of Physics at Grinnell College, where Noyce enrolled to study mathematics and physics and eventually gained a top-grade BA. It was while there that he learned of the invention of the transistor by the team at Bell Laboratories, which included John Bardeen, a former fellow student of his professor. After taking a PhD in physical electronics at the Massachusetts Institute of Technology in 1953, he joined the Philco Corporation in Philadelphia to work on the development of transistors. Then in January 1956 he accepted an invitation from William Shockley, another of the Bell transistor team, to join the newly formed Shockley Transistor Company, the first electronic firm to set up shop in Palo Alto, California, in what later became known as "Silicon Valley".
    From the start things at the company did not go well and eventually Noyce and Gordon Moore and six colleagues decided to offer themselves as a complete development team; with the aid of the Fairchild Camera and Instrument Company, the Fairchild Semiconductor Corporation was born. It was there that in 1958, contemporaneously with Jack K. Wilby at Texas Instruments, Noyce had the idea for monolithic integration of transistor circuits. Eventually, after extended patent litigation involving study of laboratory notebooks and careful examination of the original claims, priority was assigned to Noyce. The invention was most timely. The Apollo Moon-landing programme announced by President Kennedy in May 1961 called for lightweight sophisticated navigation and control computer systems, which could only be met by the rapid development of the new technology, and Fairchild was well placed to deliver the micrologic chips required by NASA.
    In 1968 the founders sold Fairchild Semicon-ductors to the parent company. Noyce and Moore promptly found new backers and set up the Intel Corporation, primarily to make high-density memory chips. The first product was a 1,024-bit random access memory (1 K RAM) and by 1973 sales had reached $60 million. However, Noyce and Moore had already realized that it was possible to make a complete microcomputer by putting all the logic needed to go with the memory chip(s) on a single integrated circuit (1C) chip in the form of a general purpose central processing unit (CPU). By 1971 they had produced the Intel 4004 microprocessor, which sold for US$200, and within a year the 8008 followed. The personal computer (PC) revolution had begun! Noyce eventually left Intel, but he remained active in microchip technology and subsequently founded Sematech Inc.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. National Academy of Engineering 1969. National Academy of Science. Institute of Electrical and Electronics Engineers Medal of Honour 1978; Cledo Brunetti Award (jointly with Kilby) 1978. Institution of Electrical Engineers Faraday Medal 1979. National Medal of Science 1979. National Medal of Engineering 1987.
    Bibliography
    1955, "Base-widening punch-through", Proceedings of the American Physical Society.
    30 July 1959, US patent no. 2,981,877.
    Further Reading
    T.R.Reid, 1985, Microchip: The Story of a Revolution and the Men Who Made It, London: Pan Books.
    KF

    Biographical history of technology > Noyce, Robert

  • 11 Bode, Hendrik Wade

    [br]
    b. 24 December 1905 Madison, Wisconsin, USA
    d. 21 June 1982 Cambridge, Massachusetts, USA
    [br]
    American engineer who developed an extensive theoretical understanding of the behaviour of electronic circuits.
    [br]
    Bode received his bachelor's and master's degrees from Ohio State University in 1924 and 1926, respectively, and his PhD from Columbia University, New York, in 1935. In 1926 he joined the Bell Telephone Laboratories, where he made many theoretical contributions to the understanding of the behaviour of electronic circuits and, in particular, in conjunction with Harry Nyquist, of the conditions under which amplifier circuits become unstable.
    During the Second World War he worked on the design of gun control systems and afterwards was a member of a team that worked with Douglas Aircraft to develop the Nike anti-aircraft missile. A member of the Bell Laboratories Mathematical Research Group from 1929, he became its Director in 1952, and then Director of Physical Sciences. Finally he became Vice-President of the Laboratories, with responsibility for systems engineering, and a director of Bellcomm, a Bell company involved in the Moon-landing programme. When he retired from Bell in 1967, he became Professor of Systems Engineering at Harvard University.
    [br]
    Principal Honours and Distinctions
    Presidential Certificate of Merit 1946. Institute of Electrical and Electronics Engineers Edison Medal 1969.
    Bibliography
    1940, "Relation between attenuation and phase in feedback amplifier design", Bell System Technical Journal 19:421.
    1945, Network Analysis and Feedback Amplifier Design, New York: Van Nostrand.
    1950, with C.E.Shannon, "A simplified derivation of linear least squares smoothing and prediction theory", Proceedings of the Institute of Radio Engineers 38:417.
    1961, "Feedback. The history of an idea", Proceedings of the Symposium on Active Networks and Feedback Systems, Brooklyn Polytechnic.
    1971, Synergy: Technical Integration and Technical Innovation in the Bell System Bell Laboratories, Bell Telephone Laboratories (provides background on his activities at Bell).
    Further Reading
    P.C.Mahon, 1975, Mission Communications, Bell Telephone Laboratories. See also Black, Harold Stephen; Shannon, Claude Elwood.
    KF

    Biographical history of technology > Bode, Hendrik Wade

  • 12 Kao, Charles Kuen

    [br]
    b. 4 November 1933 Shanghai, China
    [br]
    Chinese electrical engineer whose work on optical fibres did much to make optical communications a practical reality.
    [br]
    After the Second World War, Kao moved with his family to Hong Kong, where he went to St Joseph's College. To further his education he then moved to England, taking his "A" Levels at Woolwich Polytechnic. In 1957 he gained a BSc in electrical engineering and then joined Standard Telephones and Cables Laboratory (STL) at Harlow. Following the discovery by others in 1960 of the semiconductor laser, from 1963 Kao worked on the problems of optical communications, in particular that of achieving attenuation in optical cables low enough to make this potentially very high channel capacity form of communication a practical proposition; this problem was solved by suitable cladding of the fibres. In the process he obtained his PhD from University College, London, in 1965. From 1970 until 1974, whilst on leave from STL, he was Professor of Electronics and Department Chairman at the Chinese University of Hong Kong, then in 1982–7 he was Chief Scientist and Director of Engineering with the parent company ITT in the USA. Since 1988 he has been Vice-Chancellor of Hong Kong University.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1977. Institute of Electrical and Electronic Engineers Morris N.Liebmann Memorial Prize 1978; L.M.Ericsson Prize 1979. Institution of Electrical Engineers A.G.Bell Medal 1985; Faraday Medal 1989. American Physical Society International Prize for New Materials 1989.
    Bibliography
    1966, with G.A.Hockham, "Dielectric fibre surface waveguides for optical frequencies", Proceedings of the Institution of Electrical Engineers 113:1,151 (describes the major step in optical-fibre development).
    1982, Optical Fibre Systems. Technology, Design \& Application, New York: McGraw- Hill.
    1988, Optical Fibre, London: Peter Peregrinus.
    Further Reading
    W.B.Jones, 1988, Introduction to Optical Fibre Communications: R\&W Holt.
    KF

    Biographical history of technology > Kao, Charles Kuen

  • 13 Armstrong, Edwin Howard

    [br]
    b. 18 December 1890 New York City, New York, USA
    d. 31 January 1954 New York City, New York, USA
    [br]
    American engineer who invented the regenerative and superheterodyne amplifiers and frequency modulation, all major contributions to radio communication and broadcasting.
    [br]
    Interested from childhood in anything mechanical, as a teenager Armstrong constructed a variety of wireless equipment in the attic of his parents' home, including spark-gap transmitters and receivers with iron-filing "coherer" detectors capable of producing weak Morse-code signals. In 1912, while still a student of engineering at Columbia University, he applied positive, i.e. regenerative, feedback to a Lee De Forest triode amplifier to just below the point of oscillation and obtained a gain of some 1,000 times, giving a receiver sensitivity very much greater than hitherto possible. Furthermore, by allowing the circuit to go into full oscillation he found he could generate stable continuous-waves, making possible the first reliable CW radio transmitter. Sadly, his claim to priority with this invention, for which he filed US patents in 1913, the year he graduated from Columbia, led to many years of litigation with De Forest, to whom the US Supreme Court finally, but unjustly, awarded the patent in 1934. The engineering world clearly did not agree with this decision, for the Institution of Radio Engineers did not revoke its previous award of a gold medal and he subsequently received the highest US scientific award, the Franklin Medal, for this discovery.
    During the First World War, after some time as an instructor at Columbia University, he joined the US Signal Corps laboratories in Paris, where in 1918 he invented the superheterodyne, a major contribution to radio-receiver design and for which he filed a patent in 1920. The principle of this circuit, which underlies virtually all modern radio, TV and radar reception, is that by using a local oscillator to convert, or "heterodyne", a wanted signal to a lower, fixed, "intermediate" frequency it is possible to obtain high amplification and selectivity without the need to "track" the tuning of numerous variable circuits.
    Returning to Columbia after the war and eventually becoming Professor of Electrical Engineering, he made a fortune from the sale of his patent rights and used part of his wealth to fund his own research into further problems in radio communication, particularly that of receiver noise. In 1933 he filed four patents covering the use of wide-band frequency modulation (FM) to achieve low-noise, high-fidelity sound broadcasting, but unable to interest RCA he eventually built a complete broadcast transmitter at his own expense in 1939 to prove the advantages of his system. Unfortunately, there followed another long battle to protect and exploit his patents, and exhausted and virtually ruined he took his own life in 1954, just as the use of FM became an established technique.
    [br]
    Principal Honours and Distinctions
    Institution of Radio Engineers Medal of Honour 1917. Franklin Medal 1937. IERE Edison Medal 1942. American Medal for Merit 1947.
    Bibliography
    1922, "Some recent developments in regenerative circuits", Proceedings of the Institute of Radio Engineers 10:244.
    1924, "The superheterodyne. Its origin, developments and some recent improvements", Proceedings of the Institute of Radio Engineers 12:549.
    1936, "A method of reducing disturbances in radio signalling by a system of frequency modulation", Proceedings of the Institute of Radio Engineers 24:689.
    Further Reading
    L.Lessing, 1956, Man of High-Fidelity: Edwin Howard Armstrong, pbk 1969 (the only definitive biography).
    W.R.Maclaurin and R.J.Harman, 1949, Invention \& Innovation in the Radio Industry.
    J.R.Whitehead, 1950, Super-regenerative Receivers.
    A.N.Goldsmith, 1948, Frequency Modulation (for the background to the development of frequency modulation, in the form of a large collection of papers and an extensive bibliog raphy).
    KF

    Biographical history of technology > Armstrong, Edwin Howard

  • 14 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 15 Forrester, Jay Wright

    [br]
    b. 14 July 1918 Anselmo, Nebraska, USA
    [br]
    American electrical engineer and management expert who invented the magnetic-core random access memory used in most early digital computers.
    [br]
    Born on a cattle ranch, Forrester obtained a BSc in electrical engineering at the University of Nebraska in 1939 and his MSc at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, where he remained to teach and carry out research. Becoming interested in computing, he established the Digital Computer Laboratory at MIT in 1945 and became involved in the construction of Whirlwind I, an early general-purpose computer completed in March 1951 and used for flight-simulation by the US Army Air Force. Finding the linear memories then available for storing data a major limiting factor in the speed at which computers were able to operate, he developed a three-dimensional store based on the binary switching of the state of small magnetic cores that could be addressed and switched by a matrix of wires carrying pulses of current. The machine used parallel synchronous fixed-point computing, with fifteen binary digits and a plus sign, i.e. 16 bits in all, and contained 5,000 vacuum tubes, eleven semiconductors and a 2 MHz clock for the arithmetic logic unit. It occupied a two-storey building and consumed 150kW of electricity. From his experience with the development and use of computers, he came to realize their great potential for the simulation and modelling of real situations and hence for the solution of a variety of management problems, using data communications and the technique now known as interactive graphics. His later career was therefore in this field, first at the MIT Lincoln Laboratory in Lexington, Massachusetts (1951) and subsequently (from 1956) as Professor at the Sloan School of Management at the Massachusetts Institute of Technology.
    [br]
    Principal Honours and Distinctions
    National Academy of Engineering 1967. George Washington University Inventor of the Year 1968. Danish Academy of Science Valdemar Poulsen Gold Medal 1969. Systems, Man and Cybernetics Society Award for Outstanding Accomplishments 1972. Computer Society Pioneer Award 1972. Institution of Electrical Engineers Medal of Honour 1972. National Inventors Hall of Fame 1979. Magnetics Society Information Storage Award 1988. Honorary DEng Nebraska 1954, Newark College of Engineering 1971, Notre Dame University 1974. Honorary DSc Boston 1969, Union College 1973. Honorary DPolSci Mannheim University, Germany. Honorary DHumLett, State University of New York 1988.
    Bibliography
    1951, "Data storage in three dimensions using magnetic cores", Journal of Applied Physics 20: 44 (his first description of the core store).
    Publications on management include: 1961, Industrial Dynamics, Cambridge, Mass.: MIT Press; 1968, Principles of Systems, 1971, Urban Dynamics, 1980, with A.A.Legasto \& J.M.Lyneis, System Dynamics, North Holland. 1975, Collected Papers, Cambridge, Mass.: MIT.
    Further Reading
    K.C.Redmond \& T.M.Smith, Project Whirlwind, the History of a Pioneer Computer (provides details of the Whirlwind computer).
    H.H.Goldstine, 1993, The Computer from Pascal to von Neumann, Princeton University Press (for more general background to the development of computers).
    Serrell et al., 1962, "Evolution of computing machines", Proceedings of the Institute of
    Radio Engineers 1,047.
    M.R.Williams, 1975, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Forrester, Jay Wright

  • 16 Popov, Aleksandr Stepanovich

    [br]
    b. 16 March 1859 Bogoslavsky, Zamod, Ural District, Russia
    d. 13 January 1906 St Petersburg, Russia
    [br]
    Russian physicist and electrical engineer acclaimed by the former Soviet Union as the inventor of radio.
    [br]
    Popov, the son of a village priest, received his early education in a seminary, but in 1877 he entered the University of St Petersburg to study mathematics. He graduated with distinction in 1883 and joined the faculty to teach mathematics and physics. Then, increasingly interested in electrical engineering, he became an instructor at the Russian Navy Torpedo School at Krondstadt, near St Petersburg, where he later became a professor. On 7 May 1895 he is said to have transmitted and received Morse code radio signals over a distance of 40 m (130 ft) in a demonstration given at St Petersburg University to the Russian Chemical Society, but in a paper published in January 1896 in the Journal of the Russian Physical and Chemical Society, he in fact described the use of a coherer for recording atmospheric disturbances such as lightning, together with the design of a modified coherer intended for reception at a distance of 5 km (3 miles). Subsequently, on 26 November 1897, after Marconi's own radio-transmission experiments had been publicized, he wrote a letter claiming priority for his discovery to the English-language journal Electrician, in the form of a translated précis of his original paper, but neither the original Russian paper nor the English précis made specific claims of either a receiver or a transmitter as such. However, by 1898 he had certainly developed some form of ship-to-shore radio for the Russian Navy. In 1945, long after the Russian revolution, the communist regime supported his claim to be the inventor of radio, but this is a matter for much debate and the priority of Marconi's claim is generally acknowledged outside the USSR.
    [br]
    Bibliography
    1896, Journal of the Russian Physical and Chemical Society (his original paper in Russian).
    1897, Electrician 40:235 (the English précis).
    Further Reading
    C.Susskind, 1962, "Popov and the beginnings of radio telegraphy", Proceedings of the Institute of Radio Engineers 50:2,036.
    ——1964, Marconi, Popov and the dawn of radiocommunication', Electronics and Power, London: Institution of Electrical Engineers, 10:76.
    KF

    Biographical history of technology > Popov, Aleksandr Stepanovich

  • 17 Marrison, Warren Alvin

    [br]
    b. 21 May 1896 Inverary, Canada
    d. 27 March 1980 Palo Verdes Estates, California, USA
    [br]
    Canadian (naturalized American) electrical engineer, pioneer of the quartz clock.
    [br]
    Marrison received his high-school education at Kingston Collegiate Institute, Ontario, and in 1914 he entered Queen's University in Kingston. He graduated in Engineering Physics in 1920, his college career having been interrupted by war service in the Royal Flying Corps. During his service in the Flying Corps he worked on radio, and when he returned to Kingston he established his own transmitter. This interest in radio was later to influence his professional life.
    In 1921 he entered Harvard University, where he obtained an MA, and shortly afterwards he joined the Western Electric Company in New York to work on the recording of sound on film. In 1925 he transferred to Western Electric's Bell Laboratory, where he began what was to become his life's work: the development of frequency standards for radio transmission. In 1922 Cady had used the elastic vibration of a quartz crystal to control the frequency of a valve oscillator, but at that time there was no way of counting and displaying the number of vibrations as the frequency was too high. In 1927 Marrison succeeded in dividing the frequency electronically until it was low enough to drive a synchronous motor. Although his purpose was to determine the frequency accurately by counting the number of vibrations that occurred in a given time, he had incidentally produced the first quartz-crystal -ontrolled clock. The results were sufficiently encouraging for him to build an improved version the following year, specifically as a time and frequency standard.
    [br]
    Principal Honours and Distinctions
    British Horological Institute Gold Medal 1947. Clockmakers' Company Tompion Medal 1955.
    Bibliography
    1928, with J.W.Horton, "Precision measurement of frequency", Proceedings of the Institute of Radio Engineers 16:137–54 (provides details of the original quartz clock, although it was not described as such).
    1930, "The crystal clock", Proceedings of the National Academy of Sciences 16:496–507 (describes the second clock).
    Further Reading
    W.R.Topham, 1989, "Warren A.Marrison—pioneer of the quartz revolution", NAWCC Bulletin 31(2):126–34.
    J.D.Weaver, 1982, Electrical and Electronic Clocks and Watches, London (a technical assessment of his work on the quartz clock).
    DV

    Biographical history of technology > Marrison, Warren Alvin

  • 18 Farnsworth, Philo Taylor

    [br]
    b. 19 August 1906 Beaver, Utah, USA
    d. 11 March 1971 Salt Lake City, Utah, USA
    [br]
    American engineer and independent inventor who was a pioneer in the development of television.
    [br]
    Whilst still in high school, Farnsworth became interested in the possibility of television and conceived many of the basic features of a practicable system of TV broadcast and reception. Following two years of study at the Brigham Young University in Provo, Utah, in 1926 he cofounded the Crocker Research Laboratories in San Francisco, subsequently Farnsworth Television Inc. (1929) and Farnsworth Radio \& Television Corporation, Fort Wayne, Indiana (1938). There he began a lifetime of research, primarily in the field of television. In 1927, with the backing of the Radio Corporation of America (RCA) and the collaboration of Vladimir Zworykin, he demonstrated the first all-electronic television system, based on his early ideas for an image dissector tube, the first electronic equivalent of the Nipkow disc. With this rudimentary sixty-line system he was able to transmit a recognizable dollar sign and file the first of many TV patents. From then on he contributed to a variety of developments in the fields of vacuum tubes, radar and atomic-power generation, with patents on cathode ray tubes, amplifying and pick-up tubes, electron multipliers and photoelectric materials.
    [br]
    Principal Honours and Distinctions
    Institute of Radio Engineers Morris Leibmann Memorial Prize 1941.
    Bibliography
    1930, British patent nos. 368,309 and 368,721 (for his image dissector).
    1934, "Television by electron image scanning", Journal of the Franklin Institute 218:411 (describes the complete image-dissector system).
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press.
    O.E.Dunlop Jr, 1944, Radio's 100 Men of Science.
    G.R.M.Garratt \& A.H.Mumford, 1952, "The history of television", Proceedings of the Institution of Electrical Engineers III A Television 99.
    KF

    Biographical history of technology > Farnsworth, Philo Taylor

  • 19 Hartley, Ralph V.L.

    [br]
    b. 1889 USA
    d. 1 May 1970 Summit, New Jersey, USA
    [br]
    American engineer who made contributions to radio communications.
    [br]
    Hartley obtained his BA in 1909 from the University of Utah, then gained a Rhodes Scholarship to Oxford University, England. After obtaining a further BA and a BSc in 1912 and 1913, respectively, he returned to the USA and took a job with the Western Electric Laboratories of the Bell Telephone Company, where he was in charge of radio-receiver development. In 1915 he invented the Hartley oscillator, analogous to that invented by Colpitts. Subsequently he worked on carrier telephony at Western Electric and then at Bell Laboratories. There he concen-trated on information theory, building on the pioneering work of Nyquist, in 1926 publishing his law that related information capacity, frequency bandwidth and time. Forced to give up work in 1929 due to ill health, he returned to Bell in 1939 as a consultant on transmission problems. During the Second World War he worked on various projects, including the use of servo-mechanisms for radar and fire control, and finally retired in 1950.
    [br]
    Principal Honours and Distinctions
    Institution of Electrical and Electronics Enginners Medal of Honour 1946.
    Bibliography
    29 May 1918, US patent no. 1,592,934 (plate modulator).
    29 September 1919, US patent no. 1,419,562 (balanced modulator or detector). 1922, with T.C.Fry, "Binaural location of complex sounds", Bell Systems Technical
    Journal (November).
    1923, "Relation of carrier and sidebands in radio transmission", Proceedings of the Institute of Radio Engineers 11:34.
    1924, "The transmission unit", Electrical Communications 3:34.
    1926, "Transmission limits of telephone lines", Bell Laboratories Record 1:225. 1928, "Transmission of information", Bell Systems Technical Journal (July).
    1928, "“TU” becomes Decibel", Bell Laboratories Record 7:137.
    1936, "Oscillations in systems with non-linear reactance", Bell System Technology Journal 15: 424.
    Further Reading
    M.D.Fagen (ed.), 1975, A History of Engineering \& Science in the Bell System, Vol. 1: Bell Laboratories.
    KF

    Biographical history of technology > Hartley, Ralph V.L.

  • 20 Yagi, Hidetsugu

    [br]
    b. 28 January 1886 Osaka, Japan
    d. January 1976 Osaka, Japan
    [br]
    Japanese engineer who, with his student Shintaro Uda, developed the directional ultra-high frequency (UHF) aerial array that bears his name.
    [br]
    Yagi studied engineering at Tokyo Imperial University (now Tokyo University), graduating in 1910. For the next four years he taught at Engineering High School in Sendai, Honshu, then in 1914 he was sent to study resonance phenomena under Barkhausen at Dresden University. When the First World War broke out he was touring Europe, so he travelled to London to study under Ambrose Fleming at University College, London. Continuing his travels, he then visited the USA, studying at Harvard under G.W. Pierce, before returning to his teaching post at Sendai Engineering High School, which in 1919 was absorbed into Tohoku University. There, in 1921, he obtained his doctorate, and some years later he was appointed Professor of Electrical Engineering. Having heard of the invention of the magnetron, he worked with a student, Kinjiro Okabe; in 1927 they produced microwave energy at a wavelength of a few tens of centimetres. However, he is best known for his development with another student, Shintaro Uda, of a directional, multi-element ultrahigh frequency aerial, which he demonstrated during a tour of the USA in 1928. During the Second World War Yagi worked on radar systems. After his retirement he became Professor Emeritus at Tohoku and Osaka universities and formed the Yagi Antenna Company.
    [br]
    Principal Honours and Distinctions
    Yagi received various honours, including the Japanese Cultural Order of Merit 1976, and the Valdemar Poulsen Gold Medal.
    Bibliography
    1928, "Beam transmission of ultra-short waves", Proceedings of the Institute of Radio Engineers 6:715 (describes the Yagi-Uda aerial).
    Further Reading
    F.E.Terman, 1943, Radio Engineers' Handbook, New York: McGraw-Hill (provides a review of aerials, including the Yagi system).
    KF

    Biographical history of technology > Yagi, Hidetsugu

См. также в других словарях:

  • Institute of Radio Engineers — Following several attempts to form a technical organization of wireless practitioners in 1908 1912, the Institute of Radio Engineers (IRE) was finally established in 1912 in New York. Among its founding organizations were the Society of Wireless… …   Wikipedia

  • Institute of Radio Engineers — Das Institute of Radio Engineers, abgekürzt IRE, war von 13. Mai 1912 bis 1. Januar 1963 ein amerikanischer Berufsverband von Ingenieuren aus den Bereichen Elektrotechnik mit Sitz in New York City. Anfang 1963 entstand aus dem Zusammenschluss der …   Deutsch Wikipedia

  • Mobile phone radiation and health — A man speaking on a mobile telephone The effect of mobile phone radiation on human health is the subject of recent interest and study, as a result of the enormous increase in mobile phone usage throughout the world (as of June 2009 …   Wikipedia

  • Printed electronics — is the term for a relatively new technology that defines the printing of electronics on common media such as paper, plastic, and textile using standard printing processes. This printing preferably utilizes common press equipment in the graphics… …   Wikipedia

  • Purdue University School of Electrical and Computer Engineering — Infobox University name = Purdue University School of Electrical and Computer Engineering (ECE) motto = established = 1888 type = endowment = head = Professor Mark J.T. Smith city = flagicon|USA West Lafayette state = IN country = USA campus =… …   Wikipedia

  • State Research Center for Optics and Material Sciences (OPTIMAS) — The State Research Center for Optics and Material Sciences (OPTIMAS) connects two areas of research for which the University of Kaiserslautern has a national and international reputation, founded upon relevant contributions to the development of… …   Wikipedia

  • National Institute of Technology Calicut — Motto Tamaso Ma Jyotirgamaya Motto in English From darkness, Lead us unto Light Established 1961 …   Wikipedia

  • Dan Huttenlocher — Daniel („Dan“) Peter Huttenlocher (* 1958) ist ein US amerikanischer Professor für Informatik und Wirtschaft. Inhaltsverzeichnis 1 Leben 2 Wissenschaftliche Leistungen 2.1 Das Huttenlocher Zue Modell des lexikalischen Zugriffs …   Deutsch Wikipedia

  • Daniel Huttenlocher — Daniel („Dan“) Peter Huttenlocher (* 1958) ist ein US amerikanischer Professor für Informatik und Wirtschaft. Inhaltsverzeichnis 1 Leben 2 Wissenschaftliche Leistungen 2.1 Das Huttenlocher Zue Modell des lexikalischen Zugriffs …   Deutsch Wikipedia

  • Daniel Peter Huttenlocher — Daniel („Dan“) Peter Huttenlocher (* 1958) ist ein US amerikanischer Professor für Informatik und Wirtschaft. Inhaltsverzeichnis 1 Leben 2 Wissenschaftliche Leistungen 2.1 Das Huttenlocher Zue Modell des lexikalischen Zugriffs …   Deutsch Wikipedia

  • Цилиндрические магнитные домены —         «магнитные пузырьки», изолированные однородно намагниченные подвижные области ферро или ферримагнетика (Домены), имеющие форму круговых цилиндров и направление намагниченности, противоположное направлению намагниченности остальной его… …   Большая советская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»